HENRICO COUNTY ENVIRONMENTAL COMPLIANCE MANUAL ## WORKSHEET 14.02 - SITUATION TWO Compile existing site-specific data and determine existing site imperviousness (I_{EXIST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{EXIST} represents the actual amount of existing impervious cover on the site. | A _{SITE} | = | acres | |-------------------------------|---|---| | A _{EXIST} structures | = | acres | | parking lot | = | acres | | roadway | = | acres | | other | = | acres | | Total A _{EXIST} | = | acres | | | | - | | EXIST | = | (Total A _{EXIST} ÷ A _{SITE}) x 100 | | I _{EXIST} | = | % (expressed in whole numbers) | Compile post-development site-specific data and determine post-development site imperviousness (I_{POST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{POST} represents the actual amount of impervious cover on the site once the proposed development is complete. | A_{SITE} | | = | acres | |-------------------|-------------------|---|--| | A _{POST} | structures | = | acres | | | parking lot | = | acres | | | roadway | = | acres | | | other | = | acres | | Total A | A _{POST} | = | acres | | I _{POST} | | = | (Total A _{POST} ÷ A _{SITE}) x 100 | | I_{POST} | | = | (expressed in whole numbers) | If $I_{\text{EXIST}} \leq 16\%$ and $I_{\text{POST}} \leq 16\%$, STOP. There is no pollutant removal requirement. Otherwise, refer to the **CALCULATION OF POLLUTANT REMOVAL REQUIREMENTS** section at the beginning of this chapter for development situation determination. ## HENRICO COUNTY ENVIRONMENTAL COMPLIANCE MANUAL Calculate the pre and post-development pollutant loadings for the site using the Simple Method. $P \times P_J \times [0.05 + (0.09 \times I)] \times C \times A \times 2.72 / 12$ Where: $P_{\rm J}$ unitless rainfall correction factor > 0.9 for all of Tidewater, Virginia = = Ρ annual rainfall depth in inches 43 for the Richmond Metropolitan Area С flow weighted mean concentration of total phosphorus 0.26 mg/l for the entire County average land cover condition of the Bay watershed I_{WATERSHED} 16 percent Calculate the existing development load (L_{PRE}): $[0.05 + (0.009 \times I_{WATERSHED})] \times 2.28 \times A_{SITE}$ L_{EXIST} = > $[0.05 + (0.009 \times 16)] \times 2.28 \times$ = pounds per year L_{EXIST} = Calculate the post-development load (L_{POST}): $[0.05 + (0.009 \times I_{POST})] \times 2.28 \times A_{SITE}$ L_{POST} = $[0.05 + (0.009 \times __)] \times 2.28 \times __$ _____ pounds per year L_{POST} = Calculate the pollutant removal requirement for this project (RR_{PROJECT}): RR_{PROJECT} L_{POST} - L_{PRE} pounds per year =